
In partnership with:Dr Christopher D Jones, Dr Patrick Gartung
CHEP 2019
4 November 2019

Using OpenMP for HEP Framework Algorithm Scheduling

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

Outline
Motivation

OpenMP Review

Demonstrator Frameworks

Experiment Setup

Results

2

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

Motivation
Why bother with OpenMP when already using Intel’s Threading Building
Blocks?

HPC Centers
Super Computing Centers traditionally use OpenMP for threading
When communicating with HPC specialist, we are often asked about OpenMP
Utilization of HPC centers for HEP will only increase over time

Need to either use OpenMP or have reason to not use

3

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

OpenMP Review
OpenMP is an extension to a compiler not a library

Uses compiler pragma statements
implementations of features vary considerably across compilers

OpenMP 4.5 Constructs
omp parallel
omp for
omp task
omp taskloop

4

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

OpenMP Construct: omp parallel

Starts threads used in the following block
Once assigned those threads can only be used by that parallel construct

At end of block the job waits till all assigned threads finish the block

number of threads for each parallel block is controlled by
env variable OMP_NUM_THREADS or calling omp_set_num_threads
Max number of threads for job is controlled by env variable OMP_THREAD_LIMIT

5

 #pragma omp parallel
{ … }

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

OpenMP Constructs: omp for

Distributes iterations to threads associated with innermost parallel block

By default, calling thread waits till all iterations have completed

6

 #pragma omp for
for(int i=0; i< N; ++i){ … }

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

OpenMP Construct: nested parallel blocks
Support of concurrent nested parallel blocks is implementation defined
Also controlled by env variable OMP_NESTED or calling omp_set_nested

nested parallel blocks have as many threads as the outer blocks
Until max number of threads are reached

7

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling8

OpenMP Construct: nested parallel blocks — example 1

9 max threads per job

main thread waits till nested parallel finished

main
thread

omp_set_num_threads(3);
#pragma omp parallel for
for(int i=0; i< 3; ++i){
#pragma omp parallel for
 for(int j=0; j<3; ++j) {
 doWork(i,j);
 }
}

Tim
e

i
j j j

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling9

OpenMP Construct: nested parallel blocks — example 2

same as before except
6 max threads per job

finished threads cannot be used by other
parallel blocks

main
thread

Tim
e

i
j j j

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

OpenMP Construct: omp task

All code in the block is put into a task object

An untied task can be run by any thread of the innermost parallel section

When a task completes another task can be scheduled on the thread
The new task must be from the same parallel section

10

 #pragma omp task
{ … }

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

OpenMP Constructs: omp taskloop

Creates OpenMP tasks for the iterations

Calling thread may run other tasks while waiting for all taskloop tasks to end
I.e. implementations may do task stealing

11

#pragma omp taskloop
for(int i=0; i< N; ++i){ … }

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

Demonstrator Frameworks
Created simplified OpenMP, TBB and single threaded based frameworks

Frameworks can process multiple events concurrently

Work is done via Modules
Modules generate data and put into events
One Module can depend on data from other Modules
Modules are wrapped in OpenMP or TBB tasks
Module tasks only start once needed data are available

Modules may use parallel for constructs internally
Allows testing of nested parallelism

Code available at https://github.com/Dr15Jones/toy-mt-framework
12

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

Experimental Setup
Compiled TBB and OpenMP frameworks with gcc 8 and clang 7
Very different OpenMP 4.5 implementations

Created Module call graph that emulated CMS reconstruction
Use same module dependencies
Use module run times from 100 different events

Experiment varied
Number of threads
Number of concurrent events == number of threads
Number of events processed in a job = Number of threads * 100

Amount of module internal parallelism

Measurements done on an Intel KNL machine
13

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

Module Perfect Parallelism
All modules are concurrent capable

TBB results using gcc and clang are
identical

Ran as many single-threaded jobs as
number of threads

OpenMP and TBB have same results

14
Ev

en
t T

hr
ou

gh
pu

t (
ev

/s
ec

)

0

3

6

9

12

Number of Threads & Concurrent
Events

0 32 64 96 128 160 192 224 256

TBB
OpenMP clang
OpenMP gcc
N Single Threaded

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

One Serial Module with No Internal Parallelism
Simulate behavior of output
Serialize event access to the output module
All other modules are as before

Jobs quickly hit Ahmdal’s law limit

15
Ev

en
t T

hr
ou

gh
pu

t (
ev

/s
)

0

0.25

0.5

0.75

1

Number of Threads & Concurrent
Events

0 4 8 12 16 20 24 28 32

TBB
OpenMP clang
OpenMP gcc
N Single Threaded

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

Serial Module with Internal Parallelism: Task Stealing
Allow output module to use parallelism
Use a for loop with 100 iterations

TBB uses tbb::parallel_for
does task stealing by default

OpenMP uses taskloop
clang does task stealing
gcc does not do task stealing

Task stealing hurts throughput

16
Ev

en
t T

hr
ou

gh
pu

t (
ev

/s
)

0

3

6

9

12

Number of Threads & Concurrent
Events

0 32 64 96 128 160 192 224 256

TBB
OpenMP clang
OpenMP gcc
N Single Threaded

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

Serial Module with Internal Parallelism: No Task Stealing
Make all versions avoid task stealing

TBB use arenas

OpenMP uses omp for
Only way in API to guarantee no stealing
For each (max) number of threads
ran many jobs varying omp_set_num_threads
chose value with highest throughput

Even picking best working point for
OpenMP, TBB automatic behavior
gives best results

17
Ev

en
t T

hr
ou

gh
pu

t (
ev

/s
)

0

3

6

9

12

Number of Threads & Concurrent
Events

0 32 64 96 128 160 192 224 256

TBB
OpenMP clang & gcc
N Single Threaded

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

Conclusion
It is possible to create a HEP framework using OpenMP
Our investigation finds it would be less optimal than using TBB

Compiler implementation variations make portable performance hard
gcc taskloop does not do task stealing
clang taskloop does task stealing with no way to disable

OpenMP has composibility difficulties
parallel blocks do not share threads
nested parallelism uses fixed allocation of threads
very hard to tune how many threads to use at each nested parallel level

18

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling19

Backup Slides

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling20

Task Stealing Problem

E.g. waiting thread steals a long running task

Can’t start makeTasks till stolen task finishes

main
thread

#pragma omp taskloop
for(int i=0; i< 2; ++i){
 doWork(i);
}
makeTasks();

Tim
e

doWork(i)

makeTasks()

stolen task

Nov 2019 CD Jones I Using OpenMP for HEP Framework Algorithm Scheduling

Scanning Job Results for omp for usage
A selection of throughput vs omp_set_num_threads plots
Kept maximum number of threads == number of concurrent events for each measurement

21

Max Threads: 32

Th
ro

ug
hp

ut

0

1

2

3

omp_set_num_threads
24 26 28 30 32

gcc8
clang7

Max Threads: 48

Th
ro

ug
hp

ut

0

1

2

3

4

omp_set_num_threads
40 42 44 46 48

gcc8
clang7

Max Threads: 64

Th
ro

ug
hp

ut

0

1

2

3

4

5

omp_set_num_threads
56 58 60 62 64

gcc8
clang7

Max Threads: 96

Th
ro

ug
hp

ut

0
1
2
3
4
5
6
7

omp_set_num_threads
74 78 82 86 90

gcc8
clang7

Max Threads: 128

Th
ro

ug
hp

ut

0

3

6

9

omp_set_num_threads
112 114 116 118 120 122 124

gcc8
clang7

